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We study a statistical model describing the steady-state distribution of the fluxes in a metabolic network. The
resulting model defined on continuous variables can be solved by the cavity method. In particular, analytical
tractability is possible, solving the cavity equation over an ensemble of networks with the same degree
distribution as a real metabolic network. The flux distribution that optimizes production of biomass has a fat
tail with a power-law exponent independent of the structural properties of the underlying network. These
results are in complete agreement with the flux-balance-analysis outcome and in qualitative agreement with the
experimental results.
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Recently, much attention has been addressed by the phys-
ics community to critical phenomena �1� in complex net-
works �2–7�. Complex topologies, usually characterized by
non-Poisson degree distributions, have a large effect on the
critical point and critical exponents of the dynamical models
defining them. The Ising model �8–10�, the epidemic spread-
ing �11�, and synchronization dynamics �12� are examples of
dynamics models, where the complex structure has strong
implications. Furthermore, in the last decade we have been
witness to a big breakthrough in system biology, the interdis-
ciplinary field that studies the biological problems going be-
yond the single-biomolecule framework, with a description
of the intertwined reactions between the constituents of the
cell in terms of networks. This has generated a theoretical
framework in which previously unknown biological statisti-
cal findings have been formulated �13–15�. In system biol-
ogy there was also the fast development of “in silico” biol-
ogy in which experiments are simulated and the predictions
are made to stimulate further experimental confirmations of
the phenomena. A key example of a biological system in
which the network picture is crucial and the in silico biology
has made relevant advances is the prediction of the growth
rate of single cells of different organisms and the study of the
metabolic networks. Two key advances in this field have
been the full characterization of the chemical reactions �17�
for a series of model organisms, as different strains of Es-
cherichia coli and Saccaromyces cerevisiae �see, for ex-
ample, the BIGG database �16��, and the application of the
techniques of linear programming for the study of the reac-
tions’ fluxes, an extension which goes under the name of
flux-balance analysis �17�.

The set of stoichiometric interactions in the cell can be
represented as a network whose nodes are of two types: the
metabolic substrates of metabolites and the nodes represent-
ing the reactions. This bipartite network goes under the name
of factor graph. In a factor graph, to each reaction i is as-
signed a flux variable si and to each metabolite � is assigned
a steady-state condition for the production or consumption of
the metabolites. The structure of the metabolic network has a
projection on the metabolites which has a power-law degree
distribution �15� and a hierarchical structure �18,19�. In the
metabolic networks, to each reaction corresponds an enzyme
which regulates the rate of each reaction and modulates the
flux of the reactions. Consequently, the maximal flux rate is

fixed by the maximal enzyme concentration inside the cell.
Solving the nonlinear mass-law equations is a difficult prob-
lem in networks of thousands of nodes. To overcome this
problem in flux-balance analysis for each reaction a variable,
its flux, is introduced. Each flux includes all dynamical ef-
fects associated with each reaction of the organism. The flux-
balance analysis �17,20� considers the steady state of the
dynamics which optimizes the production of the biomass by
linear programming.

The underlying assumption of flux-balance analysis—i.e.,
the assumption that the cell organisms optimize the biomass
production—is very well confirmed by experimental results
�20�. Different variations of the algorithm have been consid-
ered �21,22�, relaxing the condition of optimization of the
biomass, which are able to predict the state of the metabolic
fluxes for knockout mutants. Nevertheless, flux-balance
analysis has been proven to be consistent also with knockout
experiments in which the cell organisms have had the chance
to adapt �23�.

In this paper we will study the flux distribution in meta-
bolic networks that has a heavy tail as found in experiments
�24� and in flux-balance-analysis �25� predictions in Echeri-
chia coli. In particular, we add to the description of the meta-
bolic networks some theoretical statistical mechanics in-
sights using the cavity method �1,26,27�. Different
theoretical models have been already proposed �28–30� for
the flux distribution, but neither of them has been able to
theoretically predict the outcome of the experiments or of the
flux-balance-analysis calculations. Here we will relate the
power-law exponent of the flux distribution with the steady
distribution as an indication of criticality. In fact, the state of
optimal biomass production can be studied as a critical state
between a phase of suboptimal viable states and a phase of
nonviable states in which the organism cannot survive. Thus
we will characterize this optimized state doing an asymptotic
expansion of the cavity equation close to the critical point
and we will measure the critical exponents corresponding to
this critical transition. The method which we formulate here
is a method to solve the cavity equation on continuous vari-
ables defined on a compact interval of the real axis, and it
can be extended to other critical phenomena on complex
networks and continuous variables defined in a limited inter-
val. We find that the distribution of the fluxes present in the
optimized state develops a power-law tail with exponents
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that are independent of the structure of the underlying net-
work. The power-law exponent that we find is in full agree-
ment with the results of flux-balance analysis �25� and only
partially in agreement with the experimental results �24�.

The metabolic network has a bow-tie structure �19�: the
metabolites are divided into input metabolites, which are
provided by the environment, and output metabolites, which
provide the biomass and intermediate metabolites. The stoi-
chiometric matrix is given by ���,i� where �=1, . . . ,M indi-
cates the number of metabolites and i=1, . . . ,N the number
of reactions and the sign of ��,i indicates if the metabolite �
is an input or output metabolite of the reaction i. In the
flux-balance-analysis method we assume that each interme-
diate metabolite has a concentration c� at steady state—i.e.,
ċ�=� j� j,�si=0, where si is the flux of the metabolic reaction
i. For the metabolites present in the environment and the
metabolites giving rise to the biomass production, we can fix
the rate at which they are, respectively, consumed g�

in�0 and
produced g�

out�0—i.e., ċ�=� j� j,�si=g�
in/out. We have already

mentioned that the fluxes have some biological limitations.
To describe these limitations we assume that the fluxes si
� �0,L�; i.e., the reactions occur at rates smaller than L.

The volume of solutions V of this problem is given by

V = �
0

L

¯ �
0

L

�
i=1

N

dsi�
�

���
j

� j,�si − g�	 . �1�

In the following we use belief propation �BP� equations in
order to fix the probability distribution of the metabolic
fluxes with the measure defined in �1�. Belief propagation
equations are defined on cavity graphs. The cavity graph C�

is the factor graph of the metabolic network in the absence of
metabolite �. The equations of BP in particular are exact in
the case in which the graph has local treelike structure, but
are known to give good results also in the presence of loops
in expanders and in general in networks in which mean-field
arguments give good results.

In the cavity graph C� the flux si of a reaction i in which
� is reacting has a cavity distribution pi→��si�. The cavity
distribution pi→��si� is the distribution of the flux of reaction
i the cavity graph C�—i.e., in absence of metabolite �. Ex-
pressing pi→��si� in terms of the cavity distribution pj→��si�
�where � is a neighbor of and i different from � and j is a
neighbor of � different from i�, we get the BP equations

pi→��si� =
1

Ci,�
�

��N�i�\�
�

j�N���\i

� dsjpj→��sj��

� �
��N�i�\�

���
j

� j,�sj + �i,�si − g�	 . �2�

Solving the BP equations for the cavity distributions, the
marginal probability of a flux si is given by

pi�si� =
1

Ci
�

��N�i�
�

j�N���\i

� dsjpj→��sj��

� �
��N�i�

���
j

� j,�sj + �i,�si − g�	 .

The distribution of the fluxes producing or consuming the

metabolite �—i.e., S��= �sii�N���—is given by

p��S��� =
1

C�

���
j

� j,�sj − g�	 �
j�N���

pj→��sj� . �3�

The entropy of the metabolic network can be expressed
as �=−����i�N���dsip��S���ln p��S���+�i�ki−1��dsipi�si�
ln pi�si�.

In order to get some analytic results we assume that as
long as we want to predict the statistical properties of the
flux distribution, the metabolic network can be modelled as a
random graph with M metabolites with degree distribution
p�k� and N reaction nodes with degree distribution p�q�. In
this network the total number of links is given by N�q�
=M�k�. In Fig. 1 we show the of p�k� and p�q� distributions
for Escherichia coli. The p�k� degree distribution for this
organism has a fat tail with a degree distribution that can be
fitted with a power law p�k��k−	 with an exponent 	�3,
while the p�q� distribution is much more peaked. In different
organisms the distribution of p�q� and p�k� do change, but
the general scenario of a fat-tail p�k� distribution and finite-
scale p�q� distribution remains unchanged. These kinds of
networks have many more short loops than Erdös and Renyi
networks, but mean-field arguments are shown to work very
well. Therefore we apply to the BP equations �2� to a random
network with given p�r� and p�q� with distributions. The
links �i,� have a random sign indicating a uniquely defined
direction of each reaction. The results are easily generaliz-
able also to include distributions for reversible reactions. We
mimic the environment and the biomass production by a ran-
dom assignment of the g�

in/out to each metabolite � of the
network. In particular, we choose draw the g� form a distri-
bution 
�g� defined as


�g� = p1��g + g1� + p2��g − g2� + �1 − p1 − p2���g� , �4�

where p1 indicates the fraction of input metabolites and g1
the rate at which input metabolites are consumed, while p2
indicates the fraction of output metabolites and g2 is the rate
of biomass production.
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FIG. 1. �Color online� The degree distribution of p�k� and p�q�
for Escherichia coli, data taken from the BIGG database �16�. The
line indicates the power law p�k�=k−	 with 	=3.0.
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To solve the BP equations �2� in this random ensemble of
graphs, we introduce the function P�s� indicating the average
cavity distribution in the random ensemble

P�s� =
1

�q�N �
i,���i

�pi→��s��
�g�, �5�

where the overbar indicates the average over random sign of
the �i,� and �¯� indicates the average over the probability
distribution 
�g� of the g’s. The Fourier transform of P�s� is
the function ��w�,

��w� =� ds eiwsP�s� , �6�

where w= 2�
L n. Using Eqs. �2�–�5� we find that the function

��w� satisfies the self-consistent equation

��w� = �
q

qp�q�
�q� �

�=1

q−1 ��
k�

k�p�k��
�k�

��
�n�

�
�


1

2
���− �� + ������k�−1�

�� e−i���g�

C��k�� �
�g�
���

�

��− 1�n� − w	 ,

where �·� indicates the average over the distribution of the
incoming and outgoing fluxes g. The normalization constant
C��k�� is then given by

C��k�� � �
�=1

q−1 ��
�


1

2
���− �� + ������k�−1�

�exp�− i�
�

�g�	���
�

��− 1�n�	 . �7�

The equation for ��w� has solutions until the rate of biomass
production g2�Gc, with Gc corresponding to the maximal
allowed biomass production of the metabolic network. As a
function of g2, the metabolic network has a phase transition
between viable values of biomass production and not viable
values of the biomass production. The critical point is the
point of optimal biomass production.

Close to the critical point of optimal biomass production
g2�Gc, we suppose that the distribution P�s� develops a fat
tail and that it can be expressed as

P�s� = s−���s�g2 − Gc��� , �8�

where � is a scaling function. The exponent � determines
the size of the critical window in which the flux distribution
P�s� preserves the fat tail consistently with the results of
�25�. In the limit of large L we can assume that w �together
with the �� is a continuous variable and we can perform an
asymptotic expansion of ��w�:

��w� = 1 − �w��−1h�w/�g2 − Gc��� . �9�

We then solve the self-consistent equation for ��w�, Eq. �7�,
for the analytic distribution p�q� and the distribution of the

metabolites connectivity decaying like a power law p�k�
�k−	. Close to the phase transition we have

C��k�� = 1 + �
�,��

�A1�g�,g����k� − 1��k�� − 1�

+ A2�g�,g����k� − 1��k� − 2��k�� − 1��

− �
�,nu�,��

A3�g�,g��,g����k� − 1��k�� − 1��k�� − 1� ,

�10�

where A1, A2, and A3 are linear functions of g�, g��, and g��.
If we develop �7� around the point w=0, we get

��w� = �
q

qp�q�
�q� �

�=1

q−1 ��
k�

k�p�k��
�k� �

�n�
� d�
1 − �k� − 1�

�����−1�Reh� +
1

2
k��k� − 1����2��−1��Reh�2��

���1 − i��
�g��

C��k��
�


�g�
���

�

��− 1�n� − w	 .

�11�

Since the sums over the degrees k� are convergent, Eq. �11�
can be written as

�w��−1�h�x� − �Re h�x��C1�g1,g2�

= wC2�g1,g2� + w2��−1��Re�h��2C3�g1,g2� , �12�

with x=w / �g2−Gc�� and with Ci linear functions of g1 and g2.
Therefore proceeding as in other mean-field problems �31�
we get the field exponents �=3 /2 and �=2 as long as the
hypothesis of flux-balance analysis is satisfied. If the distri-
bution P�s� decays as a power law close to the optimal bio-

mass production, also the distribution of the marginals P̂�s�
=�k

p�k�
�k� pi�s� will decay with the same critical indices. The

entropy goes like

� = �g2 − Gc��, �13�

with �=���−1�=1.
Therefore in the physical range for each degree distribu-

tion p�q� or p�k�� �15� the predicted power-law critical ex-
ponent for the flux distribution is �=3 /2, in good agreement
with the flux-balance calculations �25�

In conclusion we have presented a statistical-mechanical
approach to study the steady-state distribution of the fluxes
in a metabolic network assuming optimization of the bio-
mass. The analytic treatment finds a distribution of the fluxes
which is a power law with a mean-field exponent �=3 /2
independent of the structure of the metabolic network. The
method can be generalized to other critical phenomena de-
fined on continuous variables on a finite interval, and work in
this direction is in progress.
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